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Abstract

Bottom-up multi-person pose estimation methods have
difficulties in predicting the correct pose for small per-
sons due to challenges in scale variation. In this pa-
per, we present a Higher-Resolution Network (HigherHR-
Net) to learn high-resolution feature pyramids. Equipped
with mutli-resolution supervision for training and multi-
resolution aggregation for inference, the proposed ap-
proach is able to solve the scale variation challenge in
bottom-up multi-person pose estimation and localize the
keypoints, especially for small person, more precisely.
The feature pyramid in HigherHRNet consists of the fea-
ture map output from HRNet and the upsampled higher-
resolution one through a transposed convolution. High-
erHRNet outperforms the previous best bottom-up method
by 2.5% AP for medium person on COCO test-dev, show-
ing its effectiveness in handling scale variation. Fur-
thermore, HigherHRNet achieves a state-of-the-art re-
sult of 70.5% AP on COCO test-dev without using re-
finement or other post-processing techniques, surpassing
all existing bottom-up methods. The code and mod-
els are available at https://github.com/HRNet/
Higher-HRNet-Human-Pose-Estimation.

1. Introduction
2D human pose estimation aims at localizing human

anatomical keypoints (e.g., elbow, wrist, etc.) or parts. As
a fundamental technique to human behavior understanding,
it has received increasing attention in recent years.

Current human pose estimation methods can be catego-
rized into top-down methods and bottom-up methods. Top-
down methods [29, 9, 12, 36, 33, 34, 12] take a dependency
on person detector to detect person instances each with a
bounding box and then reduce the problem to a simpler
task of single person pose estimation. As top-down meth-
ods can normalize all the persons to approximately the same
scale by cropping and resizing the detected person bound-
ing boxes, they are generally less sensitive to the scale vari-
ance of persons. Thus, state-of-the-art performances on var-
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Figure 1. (a) Using image pyramid for heatmap prediction [28,
25]. (a) Generating higher resolution and spatially more accurate
heatmaps by upsampling image. Recent work PersonLab [28] re-
lies on enlarging input image size to generate high quality feature
maps. (c) Our HigherHRNet uses high resolution feature pyramid.

ious multi-person human pose estimation benchmarks are
mostly achieved by top-down methods. However, as such
methods rely on a separate person detector and need to esti-
mate pose for every person individually, they are normally
computationally intensive and not truly end-to-end systems.
By contrast, bottom-up methods [3, 25, 28, 18] start by lo-
calizing identity-free keypoints for all the persons in an in-
put image through predicting heatmaps of different anatom-
ical keypoints, followed by grouping them into person in-
stances. This strategy effectively makes bottom-up methods
faster and more capable of achieving real-time pose estima-
tion. However, because bottom-up methods need to deal
with scale variation, there still exists a large gap between
the performances of bottom-up and top-down methods, es-
pecially for small scale persons.

There are mainly two challenges in predicting keypoints
of small persons. One is dealing with scale variation, i.e. to
improve the performance of small person without sacrific-
ing the performance of large persons. The other is generat-
ing a high-resolution heatmap with high quality for precise
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localizing keypoints of small persons. Previous bottom-up
methods [3, 25, 28, 18] mainly focus on grouping keypoints
and simply use a single resolution of feature map that is 1/4
of the input image resolution to predict the heatmap of key-
points. These methods neglect the challenge of scale varia-
tion and rely on image pyramid during inference (Figure 1
(a)). Feature pyramids are basic components for handling
scale variation, however, smaller resolution feature maps
in a top-down feature pyramid usually suffer from the sec-
ond challenge. PersonLab [28] generates high-resolution
heatmaps by increasing the input resolution (Figure 1 (b)).
Although the performance of small persons increases con-
sistently as input resolution, the performance of large per-
sons begin decreasing when input resolution is too large.
To solve these challenges, it is crucial to generate spa-
tially more accurate and scale-aware heatmaps for bottom-
up keypoint prediction in a natural and simple way without
sacrificing computational cost.

In this paper, we propose a Higher-Resolution Network
(HigherHRNet) to address these challenges. HigherHR-
Net generates high-resolution heatmaps by a new high-
resolution feature pyramid module. Unlike the traditional
feature pyramid that starts from 1/32 resolution and uses
bilinear upsampling with lateral connection to gradually in-
creases feature map resolution to 1/4, high-resolution fea-
ture pyramid directly starts from 1/4 resolution which is
the highest resolution feature in the backbone and gener-
ate even higher-resolution feature maps with deconvolution
(Figure 1 (c)). We build the high-resolution feature pyra-
mid on the 1/4 resolution path of HRNet [33], to make it
efficient. To make HigherHRNet capable of handling scale
variation, we further propose a Multi-Resolution Supervi-
sion strategy to assign training target of different resolu-
tions to the corresponding feature pyramid level. Finally,
we introduce a simple Multi-Resolution Heatmap Aggrega-
tion strategy during inference to generate scale-aware high-
resolution heatmaps.

We validate our method on the challenging COCO
keypoint detection dataset [22] and demonstrate superior
keypoint detection performance. Specifically, HigherHR-
Net achieves AP of 70.5 on COCO2017 test-dev without
any post processing, outperforming all existing bottom-up
methods by a large margin. Furthermore, we observe that
most of the gain comes from medium person (there is no
small person annotation for the keypoint detection task),
HigherHRNet outperforms the previous best bottom-up
method by 2.5% AP for medium persons without sacrafic-
ing the performance of large persons (+0.3% AP). This ob-
servation verifies HigherHRNet is indeed solving the scale
variation challenge.

To summarize our contributions:

• We attempt to address the scale variation challenge,
which is rarely studied before in bottom-up multi-

person pose estimation.

• We propose HigherHRNet that generates high-
resolution feature pyramid with multi-resolution su-
pervision in the training stage and multi-resolution
heatmap aggregation in the inference stage to predict
scale-aware high-resolution heatmaps that are benefi-
cial for small persons.

• We demonstrate the effectiveness of our HigherHRNet
on the challenging COCO dataset. Our model outper-
forms all other bottom-up methods. We especially ob-
serve a large gain for medium persons.

2. Related works
Top-down methods. Top-down methods [36, 33, 29, 12,
14, 11, 9, 26] detect the keypoints of a single person within
a person bounding box. The person bounding boxes are
usually generated by an object detector [31, 21, 10]. Mask
R-CNN [12] directly adds a keypoint detection branch on
Faster R-CNN [31] and reuses features after ROIPooling.
G-RMI [29] and the following methods further break top-
down methods into two steps and use separate models for
person detection and pose estimation.

Bottom-up methods. Bottom-up methods [30, 15, 16, 3,
25] detect identity-free body joints for all the persons in an
image and then group them into individuals. OpenPose [3]
uses a two-branch multi-stage netork with one branch for
heatmap prediction and one branch for grouping. Open-
Pose uses a grouping method named part affinity field which
learns a 2D vector field linking two keypoints. Grouping is
done by calculating line integral between two keypoints and
group the pair with the largest integral. Newell et al. [25]
use stacked hourglass network [26] for both heatmap pre-
diction and grouping. Grouping is done by a method named
associate embedding, which assigns each keypoint with a
“tag” (a vector representation) and groups keypoints based
on the l2 distance between tag vectors. PersonLab [28] uses
dilated ResNet [13] and groups keypoints by directly learn-
ing a 2D offset field for each pair of keypoints. PifPaf [18]
uses a Part Intensity Field (PIF) to localize body parts and
a Part Association Field (PAF) to associate body parts with
each other to form full human poses.

Feature pyramid. Pyramidal representation has been
widely adopted in recent object detection and segmentation
frameworks to handle scale variation. SSD [24] and MS-
CNN [2] predict objects at multiple layers of the network
without merging features. Feature pyramid networks [21]
extend the backbone model with a top-down pathway that
gradually recovers feature resolution from 1/32 to 1/4, us-
ing bilinear upsampling and lateral connection. The mo-
tivation in common is to let features from different pyra-

2



Figure 2. An illustration of HigherHRNet. The network uses HRNet [33] as backbone, followed by one or more deconvolution modules
to generate multi-resolution and high-resolution heatmaps. Multi-resolution supervision is used for training. More details are given in
Section 3.

mid level to predict instances of different scales. However,
this pyramidal representation is less explored in bottom-up
multi-person pose estimation. In this work, we design a
high-resolution feature pyramid that extend the pyramid to
a different direction, starting from 1/4 resolution feature and
generate pyramid of features with higher resolution.

High resolution feature maps. There are mainly 4 meth-
ods to generate high resolution feature maps. (1) Encoder-
decoder [26, 12, 9, 32, 1, 20, 35] captures the context in-
formation in the encoder path and recover high resolution
features in the decoder path. The decoder usually contains
a sequence of bilinear upsample operations with skip con-
nections from encoder features with the same resolution.
(2) Dilated convolution [38, 6, 5, 7, 8, 4, 23, 37] (a.k.a.
“atrous” convolution) is used to remove several stride con-
volutions/max poolings to preserve feature map resolution.
Dilated convolution prevents losing spatial information but
introduces more computational cost. (3) Deconvolution
(transposed convolution) [36] is used in sequence at the end
of a network to efficiently increase feature map resolution.
SimpleBaseline [36] demonstrates that deconvolution can
generate high quality feature maps for heatmap prediction.
(4) Recently, a High-Resolution Network (HRNet) [33] is
proposed as an efficient way to keep a high resolution pass
throughout the network. HRNet [33] consists of multi-
ple branches with different resolutions. Lower resolution

branches capture contextual information and higher reso-
lution branches preserve spatial information. With multi-
scale fusions between branches, HRNet [33] can generate
high resolution feature maps with rich semantic.

We adopt HRNet [33] as our base network to gener-
ate high-quality feature maps. And we add a deconvolu-
tion module to generate higher resolution feature maps to
predict heatmaps. The resulting model is named “Higher-
Resolution Network” (HigherHRNet). As both HRNet [33]
and deconvolution are efficient, HigherHRNet is an effi-
cient model for generating higher resolution feature maps
for heatmap prediction.

3. Higher-Resolution Network
In this section, we introduce our proposed Higher-

Resolution Network (HigherHRNet). Figure 2 illustrates
the overall architecture of our method. We will firstly give
a brief overview on the proposed HigherHRNet and then
describe its components in details.

3.1. HigherHRNet

HRNet. HigherHRNet uses HRNet [33] (shown in Fig-
ure 2) as backbone. HRNet [33] starts with a high-
resolution branch in the first stage. In every following stage,
a new branch is added to current branches in parallel with 1

2
of the lowest resolution in current branches. As the network
has more stages, it will have more parallel branches with
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different resolutions and resolutions from previous stages
are all preserved in later stages. An example network struc-
ture, containing 3 parallel branches, is illustrated in Fig-
ure 2.

We instantiate the backbone using a similar manner as
HRNet [33]. The network starts from a stem that consists of
two strided 3 × 3 convolutions decreasing the resolution to
1/4. The 1st stage contains 4 residual units where each unit
is formed by a bottleneck with width (number of channels)
64, followed by one 3 × 3 convolution reducing the width
of feature maps to C. The 2nd, 3rd, 4th stages contain 1, 4,
and 3 multi-resolution blocks, respectively. The widths of
the convolutions of the four resolutions are C, 2C, 4C, and
8C, respectively. Each branch in the multi-resolution group
convolution has 4 residual units and each unit has two 3× 3
convolutions in each resolution. We experiment with two
networks with different capacity by setting C to 32 and 48
respectively.

HRNet [33] was originally designed for top-down pose
estimation. In this work, we adopt HRNet [33] to a bottom-
up method by adding a 1×1 convolution to predict heatmaps
and tagmaps similar to [25]. We only use the highest res-
olution ( 14 of the input image) feature maps for prediction.
Following [25], we use a scalar tag for each keypoint.

HigherHRNet. Resolution of the heatmap is important
for predicting keypoints for small persons. Most ex-
isting human pose estimation methods predict Gaussian-
smoothed heatmaps by preparing the ground truth
headmaps with an unnormalized Gaussian kernel applyed to
each keypoint location. Adding this Gaussian kernel helps
training networks as CNNs tend to output spatially smooth
responses as a nature of convolution operations. However,
applying a Gaussian kernel also introduces confusion in
precise localization of keypoints, especially for keypoints
belonging to small persons. A trivial solution to reduce this
confusion is to reduce the standard deviation of the Gaus-
sian kernel. However, we empirically find that it makes op-
timization harder and leads to even worse results.

Instead of reducing standard deviation, we solve this
problem by predicting heatmaps at higher resolution with
standard deviation unchanged at different resolutions.
Bottom-up methods usually predict heatmaps at resolution
1
4 of the input image. Yet we find this resolution is not high
enough for predicting accurate heatmaps. Inspired by [36],
which shows that deconvolution can be used to effectively
generate high quality and high resolution feature maps, we
build HigherHRNet on top of the highest resolution feature
maps in HRNet as shown in Figure 2 by adding a deconvo-
lution module as discussed in Section 3.3.

The deconvolution module takes as input both features
and predicted heatmaps from HRNet and generates new fea-
ture maps that are 2 times larger in resolution than the input

feature maps. A feature pyramid with two resolutions is
thus generated by the deconvolution module together with
the feature maps from HRNet. The deconvolution module
also predicts heatmaps by adding an extra 1 × 1 convolu-
tion. We follow Section 3.4 to train heatmap predictors at
different resolutions and use a heatmap aggregation strategy
as described in (Section 3.5) for inference.

More deconvolution modules can be added if larger reso-
lution is desired. We find the number of deconvolution mod-
ules is dependent on the distribution of person scales of the
dataset. Generally speaking, a dataset containing smaller
persons requires larger resolution feature maps for predic-
tion and vice versa. In experiments, we find adding a single
deconvolution module achieves the best performance on the
COCO dataset.

3.2. Grouping.

Recent works [25, 19] have shown that grouping can be
solved with high accuracy by a simple method using as-
sociative embedding [25]. As an evidence, experimental
results in [25] show that using the ground truth detections
with the predicted tags improves AP from 59.2 to 94.0 on a
held-out set of 500 training images of the COCO keypoint
detection dataset [22]. We follow [25] to use associative
embedding for keypoint grouping. The grouping process
clusters identity-free keypoints into individuals by group-
ing keypoints whose tags have small l2 distance.

3.3. Deconvolution Module

We propose a simple deconvolution module for generat-
ing high quality feature maps whose resolution is two times
higher than the input feature maps. Following [36], we use
a 4 × 4 deconvolution (a.k.a. transposed convolution) fol-
lowed by BatchNorm and ReLU to learn to upsample the
input feature maps. Optionally, we could further add sev-
eral Basic Residual Blocks [13] after deconvolution to re-
fine the upsampled feature maps. We add 4 Residual Blocks
in HigherHRNet.

Different from [36], the input to our deconvolution mod-
ule is the concatenation of the feature maps and the pre-
dicted heatmaps from either HRNet or previous deconvo-
lution modules. And the output feature maps of each de-
convolution module are also used to predict heatmaps in a
multi-scale fashion.

3.4. Multi-Resolution Supervision

Unlike other bottom-up methods [25, 28, 3] that only ap-
ply supervision to the largest resolution heatmaps, we intro-
duce a multi-resolution supervision during training to han-
dle scale variation. We transform ground truth keypoint lo-
cations to locations on the heatmaps of all resolutions to
generate ground truth heatmaps with different resolutions.
Then we apply a Gaussian kernel with the same standard
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deviation (we use standard deviation = 2 by default) to all
these ground truth heatmaps. We find it important not to
scale standard deviation of the Gaussian kernel. This is be-
cause different resolution of feature pyramid is suitable to
predict keypoints of different scales. On higher-resolution
feature maps, a relatively small standard deviation (com-
pared to the resolution of the feature map) is desired to more
precisely localize keypoints of small persons.

At each prediction scale in HigherHRNet, we calculate
the mean squared error between the predicted heatmaps of
that scale and its associated ground truth heatmaps. The
final loss for heatmaps is the sum of mean squared errors
for all resolutions.

It is worth highlighting that we do not assign different
scale of persons to different levels in the feature pyramid,
due to the following reasons. First, the heuristic used for
assigning training target depends on both the dataset and
network architecture. It is hard to transform the heuristic
for FPN [21] to HigherHRNet as both the dataset (scale dis-
tribution of person v.s. all objects) and architecture (High-
erHRNet only has 2 levels of pyramid while FPN has 4)
change. Second, ground truth keypoint targets interact with
each other since we apply the Gaussian kernel. Thus, it is
very hard to decouple keypoints by simply setting ignored
regions. We believe model has the ability to automatically
focus on specific scales in different levels of the feature
pyramid.

Tagmaps are trained differently from heatmaps in High-
erHRNet. We only predict tagmaps at the lowest resolution,
instead of using all resolutions. This is because learning
tagmaps requires global reasoning and it is more suitable to
predict tagmaps in lower resolution. Empirically, we also
find higher resolutions do not learn to predict tagmaps well
and even do not converge. Thus, we follow [25] to train the
tagmaps on feature maps at 1

4 resolution of input image.

3.5. Heatmap Aggregation for Inference

We propose a heatmap aggregation strategy during in-
ference. We use bilinear interpolation to upsample all the
predicted heatmaps with different resolutions to the reso-
lution of the input image and average the heatmaps from
all scales for final prediction. This strategy is quite different
from previous methods [3, 25, 28] which only use heatmaps
from a single scale or single stage for prediction.

The reason that we use heatmap aggregation is to en-
able scale-aware pose estimation. For example, the COCO
Keypoint dataset [22] contains persons of large scale vari-
ance from 322 pixels to more than 1282 pixels. Top-down
methods [29, 9, 36] solve this problem by normalizing per-
son regions approximately into a single scale. However,
bottom-up methods need to be aware of scales to detect
keypoints from all scales. We find heatmaps from differ-
ent scales in HigherHRNet capture keypoints with differ-

ent scales better. For example, keypoints for small per-
sons missed in lower-resolution heatmap can be recovered
in the higher-resolution heatmap. Thus, averaging predicted
heatmaps from different resolutions makes HigherHRNet a
scale-aware pose estimator.

4. Experiments

4.1. COCO Keypoint Detection

Dataset. The COCO dataset [22] contains over 200, 000
images and 250, 000 person instances labeled with 17 key-
points. COCO is divided into train/val/test-dev sets with
57k, 5k and 20k images respectively. All the experiments
in this paper are trained only on the train set. We report
results on the val set for ablation studies and compare with
other state-of-the-art methods on the test-dev set.

Evaluation metric. The standard evaluation metric is
based on Object Keypoint Similarity (OKS): OKS =∑

i exp(−d
2
i /2s

2k2i )δ(vi>0)∑
i δ(vi>0) . Here di is the Euclidean distance

between a detected keypoint and its corresponding ground
truth, vi is the visibility flag of the ground truth, s is the
object scale, and ki is a per-keypoint constant that con-
trols falloff. We report standard average precision and re-
call scores1: AP50 (AP at OKS = 0.50), AP75, AP (the
mean of AP scores at OKS = 0.50, 0.55, . . . , 0.90, 0.95),
APM for medium objects, APL for large objects, and AR
(the mean of recalls at OKS = 0.50, 0.55, . . . , 0.90, 0.95).

Training. Following [25], we use data augmentation with
random rotation ([−30◦, 30◦]), random scale ([0.75, 1.25]),
random translation ([−40, 40]) to crop an input image patch
of size 512 × 512 as well as random flip. As mentioned in
Section 3.4, we generate two ground truth heatmaps with
resolutions 128× 128 and 256× 256 respectively.

We use the Adam optimizer [17]. The base learning rate
is set to 1e−3, and dropped to 1e−4 and 1e−5 at the 200th
and 260th epochs respectively. We train the model for a
total of 300 epochs. To balance the heatmap loss and the
grouping loss, we set the weight to 1 and 1e−3 respectively
for the two losses.

Testing. We first resize the short side of the input image to
512 and keep the aspect ratio. Heatmap aggregation is done
by resizing all the predicted heatmaps to the size of input
image and taking the average. Following [25], flip testing
is used for all the experiments. All reported numbers have
been obtained with single model without ensembling.

1http://cocodataset.org/#keypoints-eval
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Method Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL

w/o multi-scale test
OpenPose [3]† - - - - 61.8 84.9 67.5 57.1 68.2
Hourglass [25] Hourglass 512 277.8M 206.9 56.6 81.8 61.8 49.8 67.0
PersonLab [28] ResNet-152 1401 68.7M 405.5 66.5 88.0 72.6 62.4 72.3

PifPaf [18] - - - - 66.7 - - 62.4 72.9
Bottom-up HRNet‡ HRNet-w32 512 28.5M 38.9 64.1 86.3 70.4 57.4 73.9

Ours HRNet-w32 512 28.6M 47.9 66.4 87.5 72.8 61.2 74.2
Ours HRNet-w48 640 63.8M 154.3 68.4 88.2 75.1 64.4 74.2

w/ multi-scale test
Hourglass [25] Hourglass 512 277.8M 206.9 63.0 85.7 68.9 58.0 70.4
Hourglass [25]† Hourglass 512 277.8M 206.9 65.5 86.8 72.3 60.6 72.6
PersonLab [28] ResNet-152 1401 68.7M 405.5 68.7 89.0 75.4 64.1 75.5

Ours HRNet-w48 640 63.8M 154.3 70.5 89.3 77.2 66.6 75.8
† Indicates using refinement.
‡ Our implementation, not reported in [33]

Table 1. Comparisons with bottom-up methods on the COCO2017 test-dev set. All GFLOPs are calculated at single-scale. For Person-
Lab [28], we only calculate its backbone’s #Params and GFLOPs. Top: w/o multi-scale test. Bottom: w/ multi-scale test. It is worth noting
that our results are achieved without refinement.

Method AP AP50 AP75 APM APL AR
Top-down methods

Mask-RCNN [12] 63.1 87.3 68.7 57.8 71.4 -
G-RMI [29] 64.9 85.5 71.3 62.3 70.0 69.7

Integral Pose Regression [34] 67.8 88.2 74.8 63.9 74.0 -
G-RMI + extra data [29] 68.5 87.1 75.5 65.8 73.3 73.3

CPN [9] 72.1 91.4 80.0 68.7 77.2 78.5
RMPE [11] 72.3 89.2 79.1 68.0 78.6 -
CFN [14] 72.6 86.1 69.7 78.3 64.1 -

CPN (ensemble) [9] 73.0 91.7 80.9 69.5 78.1 79.0
SimpleBaseline [36] 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 [33] 75.5 92.5 83.3 71.9 81.5 80.5
HRNet-W48 + extra data [33] 77.0 92.7 84.5 73.4 83.1 82.0

Bottom-up methods
OpenPose∗ [3] 61.8 84.9 67.5 57.1 68.2 66.5

Hourglass∗+ [25] 65.5 86.8 72.3 60.6 72.6 70.2
PifPaf [18] 66.7 - - 62.4 72.9 -
SPM [27] 66.9 88.5 72.9 62.6 73.1 -

PersonLab+ [28] 68.7 89.0 75.4 64.1 75.5 75.4
Ours: HigherHRNet-W48+ 70.5 89.3 77.2 66.6 75.8 74.9

Table 2. Comparisons with both top-down and bottom-up meth-
ods on COCO2017 test-dev dataset. ∗ means using refinement. +

means using multi-scale test.

Method Feat. stride/resolution AP APM APL

HRNet 4/128 64.4 57.1 75.6
HigherHRNet 2/256 66.9 61.0 75.7
HigherHRNet 1/512 66.5 61.1 74.9

Table 3. Ablation study of HRNet vs. HigherRNet on COCO2017
val dataset. Using one deconvolution module for HigherHRNet
performs best on the COCO dataset.

Results on COCO2017 test-dev. Table 1 summarizes the
results on COCO2017 test-dev dataset. From the results, we
can see that using HRNet [33] itself already serves as a sim-
ple and strong baseline for bottom-up methods (64.1 AP).
Our baseline method of HRNet with only single scale test
outperforms Hourglass [25] using multi-scale test, while
HRNet has much less parameters and computation in terms

of FLOPs. Equipped with light-weight deconvolution mod-
ules, our proposed HigherHRNet (66.4 AP) outperforms
HRNet by +2.3 AP with only marginal increase in param-
eters (+0.4%) and FLOPs (+23.1%). HigherHRNet is com-
parable with PersonLab [28] but with only 50% parame-
ters and 11% FLOPs. If we further use multi-scale test,
our HigherHRNet achieves 70.5 AP, outperforming all ex-
isting bottom-up methods by a large margin. We do not use
any post processing like refining with top-down methods
in [3, 25].

Table 2 lists both bottom-up and top-down methods
on the COCO2017 test-dev dataset. HigherHRNet further
closes the performance gap between bottom-up and top-
down methods.

4.2. Ablation Experiments

We perform a number of ablation experiments to an-
alyze Higher-Resolution Network (HigherHRNet) on the
COCO2017 [22] val dataset.

HRNet vs. HigherHRNet. We perform ablation study
comparing HRNet and HigherHRNet. For HigherHRNet,
deconvolution module without extra residual blocks is used,
and heatmaps aggregation is used for inference. Results are
shown in Table 3. A simple bottom-up baseline by using
HRNet with a feature stride of 4 achieves AP = 64.4. By
adding one deconvolution module, our HigherHRNet with
a feature stride of 2 outperforms HRNet by a large mar-
gin of +2.5 AP (achieving 66.9 AP). Furthermore, the main
improvement comes from medium persons, where APM is
improved from 57.1 for HRNet to 61.0 for HigherHRNet.

These results show that HigherHRNet performs much
better with small scales thanks to its higher resolution
heatmaps. We also find the AP for large person pose does
no drop. This is mainly because we also use smaller resolu-
tion heatmaps for prediction. It demonstrates that 1) mak-
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Figure 3. (a) Baseline method using HRNet [33] as backbone. (b) HigherHRNet with multi-resolution supervision (MRS). (c) HigherHRNet
with MRS and feature concatenation. (d) HigherHRNet with MRS and feature concatenation. (e) HigherHRNet with MRS, feature
concatennation and extra residual blocks. For (d) and (e), heatmap aggregation is used.

Network w/ MRS feature concat. w/ heatmap aggregation extra res. blocks AP APM APL

(a) HRNet 64.4 57.1 75.6
(b) HigherHRNet X 66.0 60.7 74.2
(c) HigherHRNet X X 66.3 60.8 74.0
(d) HigherHRNet X X X 66.9 61.0 75.7
(e) HigherHRNet X X X X 67.1 61.5 76.1

Table 4. Ablation study of HigherHRNet’s components. MSR: multi-resolution supervision. feature concat.: feature concatenation. res.
blocks: residual blocks.

ing prediction at higher resolution is beneficial to bottom-up
pose estimation and 2) scale-aware prediction is important.

If we add a sequence of two deconvolution modules after
HRNet to generate feature maps that is of the same resolu-
tion as the input image, we observe that the performance
decreases to 66.5 AP from 66.9 AP for adding only one de-
convolution module. The improvement for medium person
is marginal (+0.1 AP) but there is a large drop in the per-
formance of large person (−0.8 AP). We hypothesize this
is because the misalignment between feature map scale and
object scales. Larger resolution feature maps (feature stride
= 1) are good for detecting keypoints from even smaller
persons but the small persons in COCO are not considered
for pose estimation. Therefore, we only use one deconvo-
lution module by default for the COCO dataset. But we
would like to point out that the number of cascaded decon-
volution modules should be dependent on datasets and we
will validate this on more datasets in our future work.

HigherHRNet gain breakdown. To better understand
the gain of the proposed components, we perform detailed
ablation studies on each individual component. Figure 3 il-
lustrates all the architectures of our experiments. Results
are shown in Table 4.
Effect of deconvolution module. We perform ablation study
on the effect of adding deconvolution module to gener-
ate higher resolution heatmaps. For a fair comparison,
we only use the highest resolution feature maps to gener-

ate heatmaps for prediction (Figure 3 (b)). HRNet (Fig-
ure 3 (a)) achieves a baseline of 64.4 AP. By adding one de-
convolution module, the model achieves 66.0 AP which is
1.6 AP better than the baseline. This improvement is com-
pletely due to predicting on larger feature maps with higher
quality. The result verifies our claim that it is important
to predict on higher resolution feature maps for bottom-up
pose estimation.

Effect of feature concatenation. We concatenate feature
maps with predicted heatmaps from HRNet as input to the
deconvolution module (Figure 3 (c)) and the performance
is further improved to 66.3 AP. We also observe there is
a large gain in medium persons while the performance for
large persons decreases. Comparing method (a) and (c),
the gain of predicting heatmaps at higher resolution mainly
comes from medium persons (+3.7APM ). Moreover, the
drop in large persons (−1.6 AP) justifies our claim that dif-
ferent different resolutions of feature maps are sensitive to
different scales of persons.

Effect of heatmap aggregation. We further use all resolu-
tions of heatmaps following the heatmap aggregation strat-
egy for inference (Figure 3 (d)). Compared with Fig-
ure 3 (c) (66.3 AP) that only uses the highest resolu-
tion heatmaps for inference, applying heatmap aggrega-
tion strategy achieves 66.9 AP. Comparing method (d) and
(e), the gain of heatmap aggregation comes from large
person (+1.7 AP). And the performance of large person
is even marginally better than predicting at lower resolu-
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Network Input Size GFLOPs AP
HRNet 256 9.7 43.5
HRNet 384 21.9 57.0
HRNet 512 38.9 64.4
HRNet 640 60.8 65.4
HRNet 768 87.5 63.3
HRNet 896 119.1 58.8
HRNet 1024 155.6 54.3

HigherHRNet 256 11.2 52.3↑7.8
HigherHRNet 384 25.1 63.4↑6.4
HigherHRNet 512 44.6 67.1↑2.7
HigherHRNet 640 69.7 67.4↑2.0
HigherHRNet 768 100.4 64.7↑1.3
HigherHRNet 896 136.6 61.0↑1.2
HigherHRNet 1024 178.4 55.9↑1.6

Table 5. Ablation study of HigherHRNet with different input im-
age size.

tion (method (a)). It means that predicting heatmaps using
heatmap aggregation strategy is truly scale-aware.
Effect of extra residual blocks. We add 4 residual blocks
in the deconvolution module and our best model achieves
67.1 AP. Adding residual blocks can further refine the fea-
ture maps and it increases AP for both medium and large
persons equally.

Input image size. Effects of input image size are shown
in Table 5. As input size decreases, the gap between HRNet
and HigherHRNet becomes larger, which means our High-
erHRNet is much less affected by the resolution decreas-
ing. It shows that for pose estimation on low-resolution im-
age, generating higher resolution feature maps is the key
to achieving good performance. HigherHRNet is thus a fa-
vorable choice when computational complexity is crucial
and a small input resolution is demanded. For example, our
HigherHRNet with input size of 384 has comparable per-
formance to HRNet with input size of 512, however 13.8
GFLOPs (relative 36%) is saved.

Training with larger image size. In Tabel 5 we find
HigherHRNet trained with input size 512 has the best evalu-
ation performance with 640 test image size. A natural ques-
tion is can training with larger input size further improve
performance? To answer this question, we train HigherHR-
Net with 640 × 640 and 768 × 768 and results are shown
in Table 6, all three models are tested using the training im-
age size. We find that by increasing training image size
to 640, there is a significant gain of 1.4 AP. Most of the
gain comes from medium person while the performance of
large person degrades slightly. When we further change the
training image size to 768, the overall AP does not change
anymore. We observe a marginal improvement in medium

Training size AP APM APL

512 67.1 61.5 76.1
640 68.5 64.3 75.3
768 68.5 64.9 73.8

Table 6. Ablation study of HigherRNet with different training im-
age size.

Backbone #Params GFLOPs AP APM APL

HRNet-W32 28.6 47.8 68.5 64.3 75.3
HRNet-W40 44.5 110.7 69.2 64.9 75.9
HRNet-W48 63.8 154.3 69.9 65.4 76.4

Table 7. Ablation study of HigherRNet with different backbone.

person along with large degradation in large person.

Larger backbone. In previous experiments, we use
HRNet-W32 (1/4 resolution feature map has 32 channels)
as backbone. We perform experiments with larger back-
bones HRNet-W40 and HRNet-W48. Results are shown in
Table 7. We find using larger backbone consistently im-
proves performance for both medium and large person.

5. Conclusion
We have presented a Higher Resolution Network (High-

erHRNet) to solve the scale variation challenge in the
bottom-up multi-person pose estimation problem, espe-
cially for precisely localizing keypoints of small persons.
We find multi-scale image pyramid and larger input size
partially solve the problem, but these methods suffer from
high computational cost. To solve the problem, we propose
an efficient high-resolution feature pyramid based on HR-
Net and train it with multi-resolution supervision. During
the inference, HigherHRNet with multi-resolution heatmap
aggregation is capable of efficiently generating muilt- and
higher-resolution heatmaps for more accurate human pose
estimation. HigherHRNet outperforms all existing bottom-
up methods by a large margin on the challenging COCO
dataset, especially for small persons.
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