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Abstract

Visual tempo characterizes the dynamics and the tem-
poral scale of an action. Modeling such visual tempos of
different actions facilitates their recognition. Previous works
often capture the visual tempo through sampling raw videos
at multiple rates and constructing an input-level frame pyra-
mid, which usually requires a costly multi-branch network to
handle. In this work we propose a generic Temporal Pyramid
Network (TPN) at the feature-level, which can be flexibly
integrated into 2D or 3D backbone networks in a plug-and-
play manner. Two essential components of TPN, the source
of features and the fusion of features, form a feature hierar-
chy for the backbone so that it can capture action instances
at various tempos. TPN also shows consistent improvements
over other challenging baselines on several action recogni-
tion datasets. Specifically, when equipped with TPN, the 3D
ResNet-50 with dense sampling obtains a 2% gain on the val-
idation set of Kinetics-400. A further analysis also reveals
that TPN gains most of its improvements on action classes
that have large variances in their visual tempos, validating
the effectiveness of TPN.1

1. Introduction
While great progress has been made by deep neural net-

works to improve the accuracy of video action recognition
[5, 32, 33, 36, 30], an important aspect of characterizing
dfferent actions is often missed in the design of these recog-
nition networks - the visual tempos of action instances. Vi-
sual tempo actually describes how fast an action goes, which
tends to determine the effective duration at the temporal scale
for recognition. As shown at the bottom of Figure 1, action
classes naturally have different visual tempos (e.g. hand
clapping and walking). In some cases the key to distinguish
different action classes is their visual tempos, as they might
share high similarities in visual appearance, such as walk-
ing, jogging and running. Moreover, as shown at the top of
Figure 1, when performing the same action, each performer

1Code and models are available at this link.
† indicates equal contribution.
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(a) Moving something down at a fast tempo 

(b) Moving something down at a slow tempo
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Figure 1. Visual tempo variation of intra- and inter-class. The
action examples above show that people tend to act at different tem-
pos even for the same action. The plot below shows different action
categories sorted by their variances of visual tempos. Specifically
Somersaulting has the largest variance in the visual tempo of its
instances while Shearing sheep has the smallest variance. Details
of variation measurements can be found in the experiment section.

may act at his/her own visual tempo, due to various factors
such as age, mood, and energy level. e.g. ,an elder man tends
to move slower than a younger man, so as a man with a heav-
ier weight. Precise modeling of such intra- and inter-class
variances in visual tempos of action instances can potentially
bring a significant improvement to action recognition.

Previous attempts [5, 35, 33] for extracting the dynamic
visual tempos of action instances mainly rely on constructing
a frame pyramid, where each pyramid level samples the input
frames at a different temporal rate. For example, we can sam-
ple from the total 64 frames of an video instance at intervals
16 and 2 respectively, to construct a two-level frame pyra-
mid consisting of 4 and 32 frames. Subsequently, frames at
each level are fed into different backbone subnetworks, and
their output features are further combined together to make
the final prediction. By sampling frames at different rates
as input, backbone networks in [5, 35] are able to extract
features of different receptive fields and represent the input
action instance at different visual tempos. These backbone
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subnetworks thus jointly aggregate temporal information of
both fast-tempo and slow-tempo, handling action instances
at different temporal scales.

Previous methods [5, 35, 33] have obtained noticeable
improvements for action recognition, however it remains
computationally expensive to deal with the dynamic visual
tempos of action instances at the input frame level. It is not
scalable to pre-define the tempos in the input frame pyramid
and then feed the frames into multiple network branches,
especially when we use a large number of sampling rates.
On the other hand, many commonly-used models in video
recognition, such as C3D and I3D [26, 1], often stack a series
of temporal convolutions. In these networks, as the depth
of a layer increases, its temporal receptive field increases
as well. As a result, the features at different depths in a
single model already capture information of both fast-tempo
and slow-tempo. Therefore, we propose to build a temporal
pyramid network (TPN) to aggregate the information of
various visual tempos at feature level. By leveraging the
feature hierarchy formed inside the network, the proposed
TPN is able to work with input frames fed at a single rate.
As an auxiliary module, TPN could be applied in a plug-and-
play manner to various existing action recognition models to
bring consistent improvements.

In this work we first provide a general formulation of the
proposed TPN, where several components are introduced to
better capture the information at multiple visual tempos.We
then evaluate TPNs on three benchmarks: Kinetics-400 [1],
Something-Something V1 & V2 [10] and Epic-Kitchen [2]
with comprehensive ablation studies. Without any bells and
whistles, TPNs bring consistent improvements when com-
bined with both 2D and 3D networks. Besides, the ablation
study shows that TPN obtains most of its improvements from
the action classes that have significant variances in visual
tempos. This result verifies our assumption that aggregating
features in a single model is sufficient to capture the visual
tempos of action instances for video recognition.

2. Related Work
Video Action Recognition. Attempts for video action
recognition could be divided into two categories. Methods
in the first category often adopt a 2D + 1D paradigm, where
2D CNNs are applied over per-frame inputs, followed by a
1D module that aggregates per-frame features. Specifcally,
two-stream networks in [24, 7, 6, 16] utilize two separate
CNNs on per-frame visual appearances and optical flows
respectively, and an average pooling operation for tempo-
ral aggregation. Among its variants, TSN [31] proposes to
represent video clips by sampling from evenly divided seg-
ments. And TRN [38] and TSM [18] respectively replace the
average pooling operation with an interpretable relational
module and utilize a shift module, in order to better capture
information along the temporal dimension. However, due

to the deployment of 2D CNNs in these methods, seman-
tics of the input frames could not interact with each other
in the early stage, which limits their ability to capture the
dynamics of visual tempos. Methods [26, 15] in the sec-
ond category alternatively apply 3D CNNs that stack 3D
convolutions to jointly model temporal and spatial seman-
tics. Along this line of research, Non-local Network [32]
introduces a special non-local operation to better exploit the
long-range temporal dependencies between video frames.
Besides Non-local Network, different modifications for the
3D CNNs, including the inflating 2D convolution kernels [1]
and the decomposing 3D convolution kernels [21, 28, 34],
can also boost the performances of 3D CNNs. Other effects
[30, 36, 29, 22, 23] are taken on irregular convolution/pool
for better feature alignment or study action instances in a
fine-grained way. Although the aforementioned methods
could better handle temporal information, the large variation
of visual tempos remains neglected.

Visual Tempo Modeling in Action Recognition. The com-
plex temporal structure of action instances, particularly in
terms of the various visual tempos, raises a challenge for ac-
tion recognition. In recent years, researchers have started ex-
ploring this direction. SlowFast [5] hard-codes the variance
of visual tempos using an input-level frame pyramid that
has level-wise frames sampled at different rates. Each level
of the pyramid is also separately processed by a network,
where mid-level features of these networks are interactively
combined. With the assist of both the frame pyramid and the
level-specific networks, SlowFast could robustly handle the
variance of visual tempos. The complex temporal structure
inside videos, particularly tempo variation, raises a challenge
for action recognition. DTPN [35] also samples frames with
different frame per seconds (FPS) to construct a natural
pyramidal representation for arbitrary-length input videos.
However, such a hard-coding scheme tends to require multi-
ple frames , especially when the pyramid scales up. Inspired
by feature-level pyramid networks [11, 19, 20, 17] that deal
with the large variance of scales in object detection, we in-
stead leverage the feature hierarchy of a backbone network,
handling the variance of visual tempos in the feature-level.
In this way we could hide the concern about visual tempos
inside a single network, and we only need frames sampled
at a single rate at the input-level.

3. Temporal Pyramid Network

The visual tempo of an action instance is one of the key
factors for recognizing it, especially when other factors are
ambiguous. For example, we cannot tell if an action instance
belongs to walking, jogging or running based on its visual
appearance. However, it is difficult to capture the visual
tempos due to their inter- and intra-class variance across
different videos. Previous works [5, 35, 33] address this
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Figure 2. Framework of TPN: Backbone Network to extract multiple level features. Spatial Semantic Modulation spatially downsamples
features to align semantics. Temporal Rate Modulation temporally downsamples features to adjust relative tempo among levels. Information
Flow aggregates features in various directions to enhance and enrich level-wise representations. Final Prediction rescales and concatenates
all levels of pyramid along channel dimension. Note that the channel dimensions in all modules and corresponding operations are omitted
for brevity.

issue at the input-level. They utilize a frame pyramid that
contains frames sampled at pre-defined rates to represent the
input video instance at various visual tempos. Since each
level of the frame pyramid requires a separate backbone
network to handle, such an approach may be computationally
expensive, especially when the level of pyramid scales up.

Inspired by the observation that features at multiple
depths in a single network already cover various visual tem-
pos, we propose a feature-level temporal pyramid network
(TPN) for modeling the visual tempo. TPN could operate
on only a single network no matter how many levels are
included in it. Moreover, TPN could be applied to different
architectures in a plug-and-play manner. To fully implement
TPN, two essential components of TPN must be designed
properly, namely 1) the feature source and 2) the feature
aggregation. We propose the spatial semantic modulation
and temporal tempo modulation to control the relative differ-
ences of the feature source in Sec.3.1, and construct multiple
types of information flows for feature aggregation in Sec.3.2.
Finally we show how to adopt TPN for action recognition in
Sec.3.3, taking [5] as an exemplar backbone network.

3.1. Feature Source of TPN

Collection of Hierarchical Features. While TPN is built
upon a set of M hierarchical features that have increasing
temporal receptive fields from bottom to top, there are two
alternative ways to collect these features from a backbone
network. 1) Single-depth pyramid: a simple way is to choose
a feature Fbase of size C×T×W×H at some depth, and to
sample along the temporal dimension with M different rates
{r1, ..., rM ; r1 < r2 < ... < rM}. We refer to such a TPN

as a single-depth pyramid consisting of {F(1)
base, ...,F

(M)
base}

of sizes {C × T
r1
×W ×H, ..., C × T

rM
×W ×H}. Fea-

tures collected in this way could lighten the workload of
fusion as they have identical shapes besides the temporal
dimension. However, they may limit in effectiveness as they
represent video semantics only at a single spatial granularity.
2) Multi-depth pyramid: a better way is to collect a set of M
features with increasing depths, resulting in a TPN made of
{F1,F2, ...,FM} of sizes {C1 × T1 ×W1 ×H1, ..., CM ×
TM ×WM ×HM}, where generally the dimensions satisfy
{Ci1 ≥ Ci2 ,Wi1 ≥ Wi2 , Hi1 ≥ Hi2 ; i1 < i2}. Such a
multi-depth pyramid contains richer semantics in the spa-
tial dimensions, yet raises the need of careful treatment in
feature fusion, in order to ensure correct information flows
between features.

Spatial Semantic Modulation. To align spatial semantics
of features in the multi-depth pyramid, a spatial semantic
modulation is utilized for TPN. The spatial semantic modu-
lation works in two complementary ways. For each but the
top-level feature, a stack of convolutions with level-specific
stride are applied to it, matching its spatial shape and re-
ceptive field with the top one. Moreover, an auxiliary clas-
sification head is also appended to it to receive stronger
supervision, leading to enhanced semantics. The overall
objective for a backbone network with our proposed TPN
thus becomes:

Ltotal = LCE,o +

M−1∑
i=1

λiLCE,i, (1)

where LCE,o is the original Cross-Entropy loss, and LCE,i

is the loss for i-th auxiliary head. {λi} are balancing coef-
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ficients. After spatial semantic modulation, features have
aligned shapes and consistent semantics in the spatial di-
mensions. However, it remains uncalibrated in the temporal
dimension, where we introduce the proposed temporal rate
modulation.

Temporal Rate Modulation. Recall in the input-level
frame pyramid used in [5], the sampling rates of frames
could be adjusted dynamically to increase its applicabil-
ity. On the contrary, TPN is limited in the flexibility, as
it operates on features of a backbone network, so that the
visual tempos of these features are only controlled by their
depths in the original network. To equip TPN with a simi-
lar flexibility as in the input-level frame pyramid, a set of
hyper-parameters {αi}Mi=1 are further introduced to TPN for
temporal tempo modulation. Specifically, αi denotes that af-
ter spatial semantic modulation, the updated feature at i-level
will be temporally downsampled by a factor of αi, using a
parametric sub-net. The inclusion of such hyper-parameters
enables us to better control the relative differences of fea-
tures in terms of temporal scales, so that feature aggregation
could be conducted more effectively. With some abuse of
notations, we refer to Fi of size Ci × Ti ×Wi ×Hi as the
i-th feature after both the spatial semantic modulation and
the temporal rate modulation in the following content.

3.2. Information Flow of TPN

After collecting and pre-processing the hierarchical fea-
tures as in Sec.3.1, so that they are dynamic in visual tempos
and consistent in spatial semantics, we are ready to step in
the second step of TPN construction – how to aggregate
these features. Let F′i be the aggregated feature at i-th level,
generally there are three basic options:

F′i =


Fi Isolation Flow

F′i
⊕
g(Fi, Ti/Ti−1) Bottom-up Flow

F′i
⊕
g(Fi, Ti/Ti+1) Top-down Flow

, (2)

where
⊕

denotes element-wise addition. And to ensure the
compatibility of the addition between consecutive features,
during aggregation a down/up-sampling operation, g(F, δ)
with F as the feature and δ is the factor, is applied along
the temporal dimension. Besides the above basic flows to
aggregate features in TPN, we could also combine them
to achieve two additional options, namely Cascade Flow
and Parallel Flow. While applying a bottom-up flow after a
top-down flow will lead to the cascade flow, applying them
simultaneously will result in the parallel flow. See Fig. 3
for an illustration of all the possible flows. It’s worth noting
that more complicated flow (e.g. path aggregation in [20])
could be built on top of these flows. However, our attempts
in this line of research have not shown further improvement.
Finally, following Fig.2, all aggregated features in TPN will
be rescaled and concatenated for succeeding predictions.

Top-down Cascade

Bottom-up Parallel

In Out In Out

In Out Out In Out

Figure 3. Information Flow: Black arrows illustrate the aggrega-
tion directions while the orange arrows denote the IO stream from
Temporal Modulation to Final Prediction of Figure 2. The channel
dimensions and up/downsample operations are omitted.

3.3. Implementation

Here we introduce the implementation of TPN for action
recognition. Following [5], we use inflated ResNet [5] as
the 3D backbone network, for its promising performance on
various datasets [1]. Meanwhile, original ResNet [12] serves
as our 2D backbone. We use the output features of res2, res3,
res4, res5 to build TPN, where they are spatially downsam-
pled by respectively 4, 8, 16 and 32 times, compared to the
input frames. We provide the structure of 3D ResNet-50 in
Tab.1 for the reference. In the spatial semantic modulation,
a stack of convolutions with M − i stride to process the
feature at i-th level in a M -level TPN and the feature dimen-
sion would be decreased or increased to 1024. Besides, the
temporal rate modulation for each feature is achieved by a
convolutional layer and a max-pooling layer. Finally, after
feature aggregation through one of the five flows mentioned
in Sec. 3.2, features of TPN will be separately rescaled by
max-pooling operations, and their concatenation will be fed
into a fully-connected layer to make the final predictions.
TPN can be also jointly trained with the backbone network
in an end-to-end manner.
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Stage Layer Output size
raw - 8 ×224 ×224

conv1 1×7×7, 64, stride 1, 2, 2 8×112×112
pool1 1×3×3 max, stride 1, 2, 2 8×56×56

res2

 1×1×1, 64
1×3×3, 64

1×1×1, 256

×3 8×56×56

res3

 1×1×1, 128
1×3×3, 128
1×1×1, 512

×4 8×28×28

res4

 3×1×1, 256
1×3×3, 256

1×1×1, 1024

×6 8×14×14

res5

 3×1×1, 512
1×3×3, 512

1×1×1, 2048

×3 8×7×7

global average pool, fc 1×1×1

Table 1. 3D Backbone. Following [5], our inflated 3D ResNet-50
backbone for video is shown. Note that both output size and kernel
size are in T×W×H shape.

4. Experiments
We evaluate the proposed TPN on various action recog-

nition datasets, including Kinetics-400 [1], Something-
Something V1 & V2 [10], and Epic-Kitchen [2]. The consis-
tent improvements show the effectiveness and generality of
TPN. Ablation studies on the components of TPN are also
included. Moreover, we present several empirical analysis
to verify our motivation of TPN, i.e. a feature-level temporal
pyramid on a single backbone is beneficial for capturing the
variance of visual tempos. All experiments are conducted
with the single modality (i.e. RGB frames) on MMAction
[37] and evaluated on the validation set unless specified.

Dataset. Kinetics-400 [1] contains around 240k training
videos and 19k validation videos that last for 10 seconds.
It includes 400 action categories in total. Something-
Something V1 [10] consists of 86k training videos and 11k
validation videos belonging to 174 action categories, whose
durations vary from 2 to 6 seconds. The second release (V2)
of Something-Something increase the number of videos to
220k. Epic-Kitchen [2] includes around 125 verb and 352
noun categories. Following [8], we randomly select 232
videos (23439 segments) for training and 40 videos (4979
segments) for validation.

Training. Unless specified otherwise, our models are de-
faultly initialized by pre-trained models on ImageNet [3].
Following the setting in [5], the input frames are sampled
from a set of consecutive 64 frames at a specific interval τ .
Each frame is randomly cropped so that its short side ranges
in [256, 320] pixels, as in [32, 5, 25]. The augmentation

of horizontal flip and a dropout [13] of 0.5 are adopted to
reduce overfitting. And BatchNorm (BN) [14] is not frozen.
We use a momentum of 0.9, a weight decay of 0.0001 and a
synchronized SGD training over 8 GPUs [9]. Each GPU has
a batch-size of 8, resulting in a mini-batch of 64 in total. For
Kinetics-400, the learning rate is 0.01 and will be reduced
by a factor of 10 at 100, 125 epochs (150 epochs in total)
respectively. For Something-Something V1 & V2 [10] and
Epic-Kitchen [2], our model is trained for 150 and 55 epochs
separately.

Inference. There exist two ways for inference: three-crop
and ten-crop testing. a) Three-crop testing refers to three
random crops of size 256 × 256 from the original frames,
which are resized firstly to have 256 pixels in their shorter
sides. Three-crop testing is used as the approximation of
spatially fully-convolutional testing as in [25, 32, 5]. b) Ten-
crop testing basically follows the procedure of [31], which
extracts 5 crops of size 224 × 224 and flips these crops.
Specially, we conduct three-crop testing on Kinetics-400.
We also uniformly sample 10 clips of the whole video and
average the softmax probabilities of all clips as the final
prediction. For the other two datasets, ten-crop testing and
TSN-like methods with 8 segments are adopted.

Backbone. We evaluate TPN on both 2D and 3D backbone
networks. Specifically, the slow-only branch of SlowFast
[5] is applied as our backbone network (denoted as I3D)
due to its promising performance on various datasets. The
architecture of I3D is shown in Table 1, which turns the 2D
ResNet [12] into a 3D version via inflating kernels [32, 1].
Specifically, a 2D kernel of size k × k will be inflated to
have the size t × k × k, with its original weights copied
for t times and rescaled by 1/t. Note that there are no tem-
poral downsampling operations in the slow-only backbone.
ResNet-50 [12] is used as 2D backbone to show that TPN
could combine with various backbones. The final prediction
follows the standard protocol of TSN [31] unless specified.

4.1. Results

Results on Kinetics-400. We compare our TPN with other
state-of-the-art methods on Kinetics-400. The multi-depth
pyramid and the parallel flow are used as the default setting
for TPN. In detail, the multi-depth pyramid is built on the
outputs of res4 and res5. And the hyper-parameters {αi}Mi=1

are set to be {16, 32}. As discussed in the spatial semantic
modulation, an additional auxiliary head is applied on the
output of res4 with a balancing coefficient of 0.5. Sampling
intervals of input frames τ = 8, 4, 2 are compared.

The performance of I3D-R50 + TPN (i.e. TPN-R50) is in-
cluded in Table 2. It is worth noting that in Table 2 backbones
of methods with the same depth are slightly different, which
also affect their final accuracies. TPN-R50 could achieve
77.7% top-1 accuracy, better than others with the same depth.
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Model Frames Flow Top-1 Top-5
R(2+1)D [28] 16 X 73.9 90.9
I3D [1] 16 X 71.6 90.0
Two-Stream I3D [1] 64 X 75.7 92.0
S3D-G [34] 64 X 77.2 93.0
STC-X101 [4] 32 68.7 88.5
Nonlocal-R50 [32] 32 76.5 92.6
Nonlocal-R101 [32] 32 77.7 93.3
SlowFast-R50 [5] 32 77.0 92.6
SlowFast-R101 [5] 32 77.9 93.2
CSN-101 [27] 32 76.7 92.3
CSN-152 [27] 32 77.8 92.8
TPN-R50 32× 2 77.7 93.3
TPN-R101 32× 2 78.9 93.9

Table 2. Comparison with other state-of-the-art methods on
the validation set of Kinetics-400. Note that R50 and R101 denote
the backbone networks and their depth respectively.

Backbone Segments Testing Top-1
TSN-50 from [18] 8 ten-crop 69.9
TSM-50 from [18] 8 ten-crop 72.8
TSN-50 + TPN 8 ten-crop 73.5

Table 3. Improvement of 2D backbone on the validation set
of Kinetics-400. Only 8 segments are used for both training and
validation for apple-to-apple comparison.

Backbone Segments Top1@V1 Top1@V2
TRN-Multiscale [18] 8 38.9 48.8
ECO [39] 8 39.6 -
TSN-50 [18] 8 19.7 30.0
TSM-50 [18] 8 45.6 59.1
TSN-50 + TPN 8 40.6 55.2
TSM-50 + TPN 8 49.0 62.0

Table 4. Results on the validation set of Something-Something
V1 & V2. Note that results on V1 & V2 take the center crop of
1 clip/video according to [18]. And our TPN could also achieve
66.9% Top-1 accuracy on the latest leaderboard.

TPN-R101 are also evaluated with the input setting of 32×2,
which obtains an accuracy of 78.9%, surpassing other meth-
ods with the same numbers of input frames.

Being a general module, TPN could be combined with
2D networks. To show this, we add TPN to the ResNet-50
[12] in TSN (TSN-50 + TPN), and train such a combina-
tion with 8 segments (uniform sampling) in an end-to-end
manner. Different from the original TSN [31] which takes
25 segments for validation, we utilize only 8 segments and
the ten-crop testing, comparing apples to apples. As shown
in Table 3, adding TPN to TSN-50 could boost the top-1
accuracy by 3.6%.

Model Frames NOUN@1 VERB@1
TSN (RGB) [2] 25 36.8 45.7
TSN (Flow) [2] 25 17.4 42.8
TSN (Fusion) [2] 25 36.7 48.2
TSN (our impl.) 8 39.7 48.2
TSN + TPN 8 41.3 61.1

Table 5. Results on the validation set of Epic-Kitchen. TSN is
equipped with TPN.

Results on Something-Something. Results of different
baselines with and without TPN on the Something-
Something are also included in Table 4. For a fair com-
parison, we use the center crop of size 224 × 224 in all 8
segments, following the protocol used in TSM [18]. Both
TSN and TSM receive a significant performance boost after
combined with the proposed TPN. While TSM has a rel-
atively larger capacity compared to TSN, such consistent
improvements on both backbones clearly demonstrate the
generality of TPN. Besides, on the leaderboard (dated on
03/20/2020), TPN with backbone of TSM-10116f achieves
67.5% Top-1 accuracy, following the standard protocol i.e.
full resolution of 2 clips.

Results on Epic-Kitchen. As shown in Table 5, we com-
pare TSN+TPN to two baselines on Epic-Kitchen, following
the settings in [2]. Consequently, a similar improvement is
observed as in other datasets, especially on verb classifica-
tion, which has an increase of 12.9%.

4.2. Ablation Study

Ablation studies for the components of TPN are con-
ducted on Kinetics-400. Specifically, the I3D-50 backbone
and the sparse sampling strategy (i.e. 8 × 8) are adopted
unless specified otherwise.

Which feature source contributes the most to the classfi-
cation? As is mentioned in Sec.3.1, there exist two alter-
native ways to collect features from the backbone network,
namely single-depth and multi-depth. For the single-depth
pyramid, the output of res5 is sampled along the temporal
dimension at {1, 2, 4, 8} intervals respectively to construct
a four-level feature pyramid. For the multi-depth pyramid,
we choose three possible combinations as shown in Table 6a.
The parallel flow is adopted as the default option for feature
aggregation. Hyper-parameters {αi}Mi=1 for the multi-depth
pyramid are chosen to match its shape with the single-depth
pyramid. For example, if res4 and res5 are selected as feature
sources, the hyper-parameters will be {4, 8}.

The results of using different feature sources are included
in Table 6a, which suggests that the performance of TPN will
drop when we take features from relatively shallow sources
e.g. res2 or res3. Intuitively there are two related factors:

6
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Possible Sources Top-1 Top-5
None 74.9 91.9
res{2, 3, 4, 5} 74.6 91.8
res{3, 4, 5} 74.9 92.1
res{4, 5} 76.1 92.5
res{5} 75.7 92.3

(a) Possible Sources: None denotes the I3D baseline with the
depth of 50. res{i} means features are collected from the i-th
stage in ResNet [12]. Specially, res{5} takes the single-level
pyramid as 3.1.

Head Spatial Temporal Flow Top-1
74.9

X 74.6
X X 75.2
X X X 75.4
X X X X 76.1

X X X 75.9
X X 75.6

(b) Ablation Study on TPN components: We gradually add auxiliary
head (Head), spatial convolutions in semantic modulation (Spatial),
temporal rate modulation (Temporal) and information flow (Flow) onto
the baseline model.

Information Flow Top-1 Top-5
Isolation 75.4 92.4
Bottom-up 75.8 92.3
Top-down 75.7 92.3
Cascade 75.9 92.3
Parallel 76.1 92.5

(c) Information Flow: Accuracy of several TPN variants men-
tioned in Sec 3.2 are shown. The hyper-parameters {αi}Mi=1 is set
as {4, 8}.

Backbone T × τ w/o TPN w/ TPN ∆ Acc
8×8 74.9 76.1 +1.2

I3D-50 16×4 76.1 77.3 +1.2
32×2 75.7 77.7 +2.0
8×8 76.0 77.2 +1.2

I3D-101 16×4 77.0 78.1 +1.1
32×2 77.4 78.9 +1.5

(d) Input Frames: Different number of frames are adopted to evaluate
whether TPN has the consistent improvement.

Table 6. Ablation studies on Kinetics-400. Backbone is I3D-50 and takes 8× 8 frames as input unless specified.

1) different from object detection where the low-level fea-
tures contribute to the position regression, action recognition
mainly relies on high-level semantics. 2) Another factor
might be that the I3D backbone [5] only inflates the con-
volutions in the blocks of res4 and res5, so that both res2
and res3 is unable to capture useful temporal information.
Unfortunately, inflating all 2D convolutions in the backbone
will increase the computational complexity significantly and
damage the performance as reported in [5]. Compared to
the multi-depth pyramid, the single-depth pyramid extracts
various tempo representations by directly sampling from a
single source. Although improvement is also observed, rep-
resenting video semantics only at a single spatial granularity
may be insufficient.

How important are the information flows? In Sec.3.2,
several information flows are introduced for feature aggrega-
tion. Table 6c lists the performances of different information
flows, keeping other components of TPN unmodified. Sur-
prisingly, TPN with the Isolation Flow also boosts the perfor-
mance by 0.58%, indicating that under proper modulations,
the features with different temporal receptive fields indeed
could help action recognition, even they come from a single
backbone network. TPN with the Parallel Flow obtains the
best result, leading to a performance of 76.1%. The success
of parallel flow suggests that lower-level features could be
enhanced by higher-level features via the top-down flow for
they have larger temporal receptive fields. The semantics of

higher-level features could also be enriched by lower-level
features via the bottom-up flow. More importantly, such
two opposing information flows are not contradictive but
complementary to each other.

How important are spatial semantic modulation and
temporal rate modulation? The spatial semantic modu-
lation and the temporal rate modulation are respectively
introduced to overcome the semantic inconsistency in spa-
tial dimensions and to adjust the relative rates of different
levels in the temporal dimension. The effect of these two
modulations are studied in Table 6b, from which we observe:
1) TPN with all the components lead to the best result. 2)
if the spatial semantic modulation contains no spatial con-
volutions, we have to up/down-sample the features of TPN
simultaneously at spatial and temporal dimensions, which
is ineffective for temporal feature aggregation.

How important is the number of input frames? While
we use 8 frames sampled at the stride of 8 as the default
input in our study experiments, we have also investigated
different sample schemes. We denote T × τ as T frames
sampled with the stride of τ . And in Table 6d, we include
results of both I3D-50 and I3D-101 with inputs obtained by
different sample schemes. Consequently, compared to the
sparser sampling scheme (8×8), the denser sampling scheme
(32×2) tends to bring it both rich and redundant information,
leading to a slight over-fitting of I3D-50. I3D-50 + TPN,
however, does not encounter such an over-fitting, obtaining
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Figure 4. Performance Gain vs. Variance of Visual Tempos.
Each red point denotes the mean accuracy gain within a bin of
variance. The blue line is the result of least squares approximation.

an increase of 2%. Moreover, consistent improvements are
observed for the stronger backbone I3D-101.

4.3. Empirical Analysis

To verify whether TPN has captured the variance of visual
tempos, several empirical analyses are conducted on TPN.

Per-class performance gain vs. per-class variance of vi-
sual tempos. At first, we have to measure the variance of
visual tempos for a set of action instances. Unlike the con-
cept of scale in object detection, it is non-trivial to precisely
compute the visual tempo of an action instance. Therefore,
we propose a model-based measurement that utilizes the Full
Width at Half Maximum (FWHM) of the frame-wise classifi-
cation probability curve. FWHM is defined by the difference
between the two points of a variable where its value is equal
to half of its maximum value. We use a trained 2D TSN
to collect per-frame classification probabilities for action
instances in the validation set, and compute the FWHM for
each instance as a measurement of its visual tempo, since
when the sampling fps is fixed, a large FWHM intuitively
means the action is going with a slow tempo, vice versa. We
thus could compute the variance of visual tempos for each
action category. The bottom in Figure 1 shows the variances
of visual tempos of all action categories, which reveals that
not only the variance of visual tempos is large for some cate-
gories, different categories also have significantly different
variances of visual tempos.

Subsequently, we also estimate the correlations between
per-class performance gains when adopting a TPN module
and per-class variances of visual tempos. We at first smooth
the bar chart in Figure 1 by dividing them into bins with an
interval of 10. We then calculate the mean of performance
gains in each bin. Finally, the statistics of all bins is shown
in Figure 4, where performance gain is positively correlated
with variance of visual tempos. This study strongly supports
our motivation that TPN could bring a significant improve-
ment for such actions with large variances of visual tempo.
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Figure 5. Robustness to Variance of Visual Tempos. Both base-
line and TPN models are trained on 8 × 8 frames. The red line
pictures the performance drop of baseline with TPN While the blue
dash line denotes that of baseline only.

Robustness of TPN to visual tempo variation. Human
recognizes actions easily in spite of the large variance of
the visual tempos. Does the proposed TPN module also pos-
sess such robustness? To study this, we at first train a I3D-50
+ TPN on Kinetics-400 [1] with 8× 8 (T × τ ) frames as the
input. We then re-scale the original 8× 8 input by re-sample
the frames with stride τ equals to {2, 4, 6, 10, 12, 14, 16}
respectively, so that we are adjusting the visual tempo of a
given action instance. For instance, when feeding frames
sampled as 8× 16 or 8× 2 into the trained I3D-50 + TPN,
we are essentially speeding up / slowing down the original
action instance since the temporal scope increases/decreases
relatively. Figure 5 includes the accuracy curves of varying
visual tempos for I3D-50 and I3D-50 + TPN, from which we
can see TPN help improve the robustness of I3D-50, result-
ing in a curve with moderator fluctuations. Moreover, the
robustness to the visual tempo variation becomes clearer as
we vary the visual tempo harder, as TPN could adapt itself
dynamically according to the need.

5. Conclusion

In this paper, a generic module called Temporal Pyra-
mid Network is proposed to capture the visual tempos of
action instances. Our TPN, as a feature-level pyramid, can
be applied to existing 2D/3D architectures in the plug-and-
play manner, bringing consistent improvements. Empirical
analyses reveal the effectiveness of TPN, supporting our mo-
tivation and design. We will extend TPN for other video
understanding tasks in the future work.
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