大纲

Brief Intorduction to NAS/D-NAS

Efficient Search Methods

  • Differentiable Architecture Sampler (GDAS)
  • Partially-Connected DARTS (PC-DARTS)

Challenge in Optimization

  • The performance collapse problem & Early stopping (DARTS+)
  • Eliminating unfair advantages (FairDARTS)
  • NAS evaluation is frustratingly hard in DARTS search space
  • Training on a small proxy
  • Relativistic architecture performance predictor (ReNAS)
  • Zero-cost metrics from prune-at-initialization techniques

Challenge in Selection

  • Large curvatures of validation loss w.r.t $\alpha$ (SDARTS)
  • The role of dominate eigenvalues $\lambda_{max}^{\alpha}$ of $\nabla_{\alpha}^{2}\mathcal{L}_{valid}$ (R-DARTS)
  • The pitfall of magnitude-based selection

Few-shot NAS & Architecture Distribution

  • Few-shot NAS
  • Latent architectural distribution

One-stage NAS & Hardware Deployment

  • Direct NAS Without Parameter Retraining (DSNAS)
  • Train a once-for-all (OFA) network for hardware deployment

视频 & PPT

  • 会议录制视频&PPT链接:https://meeting.tencent.com/v2/cloud-record/share?id=7a05f926-04ba-4da7-9888-8e3eec515f94&from=3